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Summary

 

Forest trees have gained much attention in recent years as nonclassical model
eukaryotes for population, evolutionary and ecological genomic studies. Because of
low domestication, large open-pollinated native populations, and high levels of both
genetic and phenotypic variation, they are ideal organisms to unveil the molecular
basis of population adaptive divergence in nature. Population genomics, in its broad-
sense definition, is an emerging discipline that combines genome-wide sampling
with traditional population genetic approaches to understanding evolution. Here we
briefly review traditional methods of studying adaptive genetic variation in forest
trees, and describe a new, integrated population genomics approach. First, alleles
(haplotypes) at candidate genes for adaptive traits and their effects on phenotypes
need to be characterized via sequencing and association mapping. At this stage,
functional genomics can assist in understanding gene action and regulation by
providing detailed transcriptional profiles. Second, frequencies of alleles in native
populations for causative single-nucleotide polymorphisms are estimated to identify
patterns of adaptive variation across heterogeneous environments. Population
genomics, through deciphering allelic effects on phenotypes and identifying
patterns of adaptive variation at the landscape level, will in the future constitute a
useful tool, if cost-effective, to design conservation strategies for forest trees.
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Introduction

 

Understanding the genetic basis of population divergence
and adaptation is an important goal in population genetics
and evolutionary biology. Forest geneticists have long been
concerned with understanding the interplay of evolutionary

factors, demography and population structure that, together,
shape genetic variation and adaptation in tree species
(Eriksson, 1998; Namkoong, 2001). Traditional methods
such as provenance tests and screening of molecular genetic
markers have been used to study and measure adaptive genetic
diversity in forest-tree populations. However, adaptive traits
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are usually under multigenic control. Here we review how
developments in forest genomics now provide us with tools
to identify the genes controlling adaptive traits and methods
to carry out new-generation population genetic studies.
Population genomics combines genome-wide sampling with
the population-genetics objective of understanding evolution
(Luikart 

 

et al

 

., 2003). This emerging discipline takes advant-
age of the availability of functional genetic markers and new
tools of population analysis, such as association mapping and
genome scans, to reveal adaptive patterns in nature. Popula-
tion genomics is complementary to other new approaches,
such as community and ecosystem genetics (Whitham 

 

et al

 

.,
2003); evolutionary and ecological functional genomics
(Feder & Mitchell-Olds, 2003); and landscape genetics
(Manel 

 

et al

 

., 2003). We briefly describe population genomics
approaches applied to forest trees, and how they might be
useful for understanding patterns of adaptive variation in
forest-tree populations.

 

Traditional methods to study adaptive genetic 
variation in forest trees

 

Field experiments

 

Common-garden experiments (provenance, progeny and
clonal tests) are commonly used to study adaptive evolution
of quantitative traits in forest-tree populations. Such studies
have focused on traits of economic interest such as survival,
growth, wood properties, cold-hardiness, drought tolerance,
and pest or disease resistance. They have often shown
geographical patterns of adaptive genetic variation, such as
steep latitudinal or altitudinal clines, resulting from natural
selection and local adaptation (Campbell, 1979; Rehfeldt

 

et al

 

., 1999; García-Gil 

 

et al

 

., 2003). Tree populations are
usually well adapted to local environments, although it is not
uncommon to find populations living in suboptimal con-
ditions. This can occur in zones with temporal fluctuation
of local conditions, such as climate changes, or in marginal
populations that receive recurrent maladapted immigrants
from neighbouring populations (Rehfeldt 

 

et al

 

., 2001).
Common-garden studies of various kinds are used in tree
breeding, and can identify families and clones that are
specifically adapted to particular environments or to a
broad variety of environments. Much has been learned
about patterns of adaptive variation in complex traits at
both macro- and micro-environmental levels. However,
field experiments are very time consuming and relatively
expensive and, more importantly, are based solely on
phenotypes. They can estimate genetic parameters, but
only on measurable traits, not on individual genes. The
common-garden approach can provide information on
neither what particular genes are involved in adaptation, nor
how much phenotypic variation can be explained by genetic
variation in these genes.

 

Molecular genetic markers

 

Genetic marker studies have contributed greatly to the under-
standing of gene flow, hybridization, population structure,
genetic drift and mating systems (Newton 

 

et al

 

., 1999;
Ouborg 

 

et al

 

., 1999; Hamrick & Nason, 2000; Linhart,
2000). In forest trees specifically, common applications
of molecular markers have been to measure genetic diversity
(Petit 

 

et al

 

., 2005); to test glaciation hypotheses related
to patterns of migration (Petit 

 

et al

 

., 2003); to characterize
human-mediated spread of particular genotypes (Gil 

 

et al

 

.,
2004); and to describe the breeding structure and gene flow
in plants with keystone ecological roles (Nason 

 

et al

 

., 1998;
Adams & Burczyk, 2000; Smouse & Sork, 2004).

However, molecular-marker studies have contributed little
to our understanding of natural selection and adaptation
in forest-tree populations. A classification of genetic markers
that takes into account their most important features can be
found in Table 1 of Krutovsky & Neale (2005a). Biochemical
markers, such as allozymes, are a class of genetic marker
widely used in the past, and although variation revealed by
these markers is caused by amino acid variation, it is often
unclear whether this variation is selectively neutral or has any
adaptive significance. DNA variation that resides in noncod-
ing genomic regions (although a fraction of it might have vital
regulatory functions; Sandelin 

 

et al

 

., 2004), or does not lead
to a change in the amino acid sequence, is likely to be selec-
tively neutral. Many modern genetic markers, such as micro-
satellites or simple sequence repeats (SSRs), random amplified
polymorphic DNA (RAPDs) and amplified fragment-length
polymorphisms (AFLPs) generally reveal noncoding DNA
sequences and should be assumed then to be selectively
neutral. Restriction fragment-length polymorphisms (RFLPs)
are of two general types, based on (1) complementary DNA
(cDNA); or (2) genomic DNA. Both types have been used
in forest trees, although only cDNA-based markers might
potentially reveal adaptive variation.

There are many studies showing adaptive differences in
morphological, phenological or growth characteristics among
populations of forest-tree species, but only rarely have accom-
panying differences for molecular markers been found (see
references in Boshier & Young, 2000). Despite a few studies
showing concordance of morphological and allozymic
variation (Lagerkrantz & Ryman, 1990; Mitton 

 

et al

 

., 1998;
Mitton & Duran, 2004), most studies showed different patterns
of molecular marker and quantitative variation (reviewed
by Karhu 

 

et al

 

., 1996; McKay & Latta, 2002). In conifers,
molecular markers typically show far less variation than adap-
tive traits when sampled in the same populations or across the
same range (Adams & Campbell, 1981; Merkle 

 

et al

 

., 1988;
Karhu 

 

et al

 

., 1996; González-Martínez 

 

et al

 

., 2004). Further-
more, it might have been assumed in the past that some (if not
many) of these markers could be genetically linked to genes
under natural selection and would thus reveal adaptive
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patterns, but recent studies showing relatively weak linkage
disequilibrium (LD) in tree populations indicate that the
assumption was unrealistic.

 

Quantitative trait locus mapping

 

Quantitative trait locus (QTL) mapping is primarily a
method of finding genetic regions that are responsible for
variation in complex traits, although it can also be used to
study adaptive traits in forest trees. Quantitative trait locus
mapping is relatively straightforward, but requires (1) dense
genetic maps with evenly distributed markers covering the
entire genome; (2) appropriate statistical tools; and (3) sufficient
progeny size segregating for both genetic markers and pheno-
typic traits (Paterson, 1998). First, genetic markers are genotyped
and quantitative traits are phenotyped in all individuals of a
segregating population. Phenotypic values are then statistically
associated with genotypes, usually using multiple-regression
or maximum-likelihood methods to identify markers that
cosegregate with the quantitative trait. An association between a
genetic marker and a phenotypic trait is usually the result of
tight linkage between a marker and a gene or genes that
control the phenotypic trait. Quantitative trait locus mapping
depends heavily on dense genetic maps that are usually time-
consuming and expensive to construct, and requires large
sample sizes (over 500 individuals). Quantitative trait locus
detection is often problematic, and has limited application
because of: (1) instability of QTL associations across different
environments and genetic backgrounds; (2) preferential
detection of QTL with large phenotypic effect, and therefore
underestimation of the number of genes with minor effects
that also control a trait; (3) the multiplicity of epistatic QTL
effects; and (4) caveats associated with statistical methods, such
as assumption of normal distribution of phenotypic traits and
multiple testing that can lead to detection of false-positive
QTL (Doerge, 2002; Mauricio, 2001). For example, some
QTL for spring cold-hardiness and other traits in Douglas
fir were detected only in one environment, not in another
(Jermstad 

 

et al

 

., 2001b; Wheeler 

 

et al

 

., 2005). This makes
verification of QTL a very important requirement. Further-
more, QTL very rarely explain a significant part of the total
phenotypic variation associated with a trait (Doerge, 2002). For
instance, in conifers they usually explain only about 5–15% of
phenotypic variation (Table 1 at http://www.pinegenome.org/
pdf/workshop_summary.pdf ). Nevertheless, QTL for several
adaptive traits, such as growth rhythm, phenology, stem
form, wood quality, disease resistance, cold hardiness, drought
tolerance and others, have been detected and mapped in forest
trees (for reviews see Sewell & Neale, 2000; Guevara 

 

et al

 

.,
2005). A high level of heterozygosity in forest trees, caused
by large population sizes and the outcrossing mating system,
allows the use of progeny from 

 

F

 

1

 

 crosses for QTL mapping,
unlike many crop species that typically require 

 

F

 

2

 

 crosses. For
example, Lerceteau 

 

et al

 

. (2000) identified three QTL that

explained 25.8% of the total phenotypic variance for the tree-
height trait using an 

 

F

 

1

 

 full-sib progeny from two plus-trees
originating in northern Sweden. Genetic regions harbouring
QTL for adaptive traits have been identified in Douglas fir
(Jermstad 

 

et al

 

., 2001a, 2001b, 2003; Wheeler 

 

et al

 

., 2005);
pine hybrids (Weng 

 

et al

 

., 2002); poplar (Frewen 

 

et al

 

., 2000;
Ferris 

 

et al

 

., 2002; Wu 

 

et al

 

., 2003); willows (Tsarouhas 

 

et al

 

.,
2002, 2003, 2004; Ronnberg-Wastljung 

 

et al

 

., 2005); loblolly
pine (Neale 

 

et al

 

., 2002; Sewell 

 

et al

 

., 2002; Brown 

 

et al

 

.,
2003); maritime pine (Brendel 

 

et al

 

., 2002; Markussen 

 

et al

 

.,
2003; Pot, 2004); Scots pine (Lerceteau 

 

et al

 

., 2001; Yazdani

 

et al

 

., 2003); radiata pine (Devey 

 

et al

 

., 2004a, 2004b);
European beech (Scalfi 

 

et al

 

., 2004); chestnut (Casasoli 

 

et al

 

.,
2004); oak (Scotti-Saintagne 

 

et al

 

., 2004a); eucalyptus (Kirst

 

et al

 

., 2004; Thamarus 

 

et al

 

., 2004).
However, QTL studies cannot reveal the specific genes

underlying the adaptive traits. The QTL mapping data can be
used to identify individual genes via positional cloning, but it
is very challenging, if not impossible, in forest trees. Positional
cloning requires a well defined, narrow QTL interval that can
be achieved only by means of a large segregating population
(over 1000 individuals) and a marker-saturated fine-linkage
map. Then a large-insert genomic library (bacterial artificial
chromosome, BAC or yeast artificial chromosome, YAC) should
be screened to find a genomic fragment that corresponds to
this QTL interval. The fragment can be progressively
sequenced, but it may potentially contain many different
genes. In forest trees, precision of QTL mapping is usually
low (intervals under which QTL are mapped can include
several hundred genes), and comprehensive BAC libraries have
been developed only in a few tree species (e.g. 

 

Eucalyptus

 

,
Grattapaglia, 2004) with genomes much smaller than conifers.
Nevertheless, QTL studies have shown the existence of loci
with major effects on phenotypes, typically explaining 5–15%
of the phenotypic variance (see review by Guevara 

 

et al

 

.,
2005). Furthermore, use of candidate genes for QTL mapping
of adaptive traits can increase the chances of finding the target
genes underlying these traits, because collocation between
candidate gene and QTL might suggest that the candidate
gene is directly involved in the control of the adaptive trait
(Frewen 

 

et al

 

., 2000; Brown 

 

et al

 

., 2003; Chagné 

 

et al

 

., 2003;
Wheeler 

 

et al

 

., 2005).

 

Recent population and functional genomics 
approaches

 

New types of functional genomic markers

 

The ideal molecular marker for the study of adaptive variation
should meet the following criteria: (1) be directly involved in
the genetic control of adaptive traits; (2) have an identified
DNA sequence and known function; and (3) have easily
identifiable allelic variation. These criteria are not fully
satisfied by any traditional marker, but new sequence-based

http://www.pinegenome.org/
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markers that do so are rapidly being developed in several
forest-tree species.

The past decade has seen an enormous increase in genomic
resources publicly available for forest trees. Expressed sequence
tag (EST) sequencing projects have provided numerous
nucleotide sequences for pine, poplar, spruce (327 484;
260 997; 79 003, respectively, available at the July 2005
release of The Institute for Genomic Research, TIGR), and other
tree species (see listing of EST projects and databases in forest
trees at http://dendrome.ucdavis.edu/Gen_Page_body.htm and
http://www.tigr.org/tdb/tgi/plant.shtml). Expressed sequence
tags represent expressed genes with known or predicted
function, and therefore can be considered as a new type of
functional genomic marker (Andersen & Lubberstedt, 2003).
Direct analysis of EST sequences has shown that approx.
2–8% of them contain SSR regions that can easily be used
for developing hundreds, if not thousands, of SSR markers
(Scotti 

 

et al

 

., 2000; Moriguchi 

 

et al

 

., 2003; see references in
Gupta & Rustgi, 2004; Li 

 

et al

 

., 2004; La Rota 

 

et al

 

., 2005;
Vasemägi 

 

et al

 

., 2005), which are also readily transferable
among related species (Chagné 

 

et al

 

., 2004). For example, the
poplar (

 

Populus trichocarpa

 

) complete genome contains more
than 300 000 perfect-repeat SSRs. Tuskan 

 

et al

 

. (2004) esti-
mated that approx. 70–99% of these would be transferable
within and across sections at the subgenus level within

 

Populus

 

. In outbreeding species with large population sizes and
high recombination, such as several forest trees, SSRs found
within noncoding (usually 3

 

′

 

) untranslated regions in ESTs
represent the same genomic region, but might not necessarily
be in LD with coding regions because of the short extent of

LD in these species. Therefore the identification of selection
signatures on EST-based SSRs provides a means to study
whether nucleotide polymorphism patterns in functional
regions are the result of selection or other factors, such as
demographic processes.

Single-nucleotide polymorphisms (SNPs) are potentially
the best type of genetic marker because of their abundance in
the genome and their potential association with disease and
adaptive traits. Typical SNP discovery projects are based on
direct sequencing of amplicons from a set of individuals (the
discovery panel) covering the range of variation of a given
species (Kado 

 

et al

 

., 2003; Brown 

 

et al

 

., 2004; González-
Martínez 

 

et al

 

., 2006; Krutovsky & Neale, 2005b; Pot 

 

et al

 

.,
2005). The dinucleotide nature of most SNPs facilitates the
development of automated high-throughput SNP-genotyping
methods (see reviews in Kwok, 2001; Hirschhorn & Daly,
2005). 

 

In silico

 

 SNP discovery has also been implemented in
several forest-tree EST databases to discover SNP variation in
ESTs (loblolly pine, http://fungen.org/Projects/Pine/Pine.htm;
maritime pine, http://www.pierroton.inra.fr/genetics/Pinesnps).
Although highly efficient (e.g. for maritime pine, Le-Dantec

 

et al

 

., 2004), 

 

in silico

 

 SNP discovery can be biased because
of the typically small number of individuals from a limited
number of populations used to generate EST libraries (Gupta

 

et al

 

., 2005 and references therein).
The best candidates for population genomics and related

approaches are SNPs that cause nonsynonymous substitu-
tions, mark haploblocks, and are under positive selection (as
shown by neutrality tests). Given the level of nucleotide diver-
sity and within-gene LD found in trees (Table 1), genotyping

Table 1 Nucleotide diversity, recombination and putative candidate gene loci under selection identified by analyses of DNA sequence variation 
patterns in forest trees

Species
Number 
of loci

Sample 
size

Nucleotide 
diversity (π)

Recombination 
rate (ρ)

Putative candidate 
genes under selection References

Pinus pinaster 8 22–91 0.0024 NA pp1 (glycine-rich protein);
cesA3; korrigan 

Pot et al. (2005); 
D. Pot 
(personal communication)

Pinus radiata 8 12–23 0.0019 NA pp1 (glycine-rich protein);
cesA3; korrigan 

Pot et al. (2005); 
D. Pot 
(personal communication)

Pinus sylvestris 1–2 12–20 0.0007; 
0.0014

NA – Dvornyk et al. (2002); 
García-Gil et al. (2003)

Pinus taeda 18–19 32 0.0040; 
0.0051

0.00175; 
0.00326

ccoaomt-1; erd3 Brown et al. (2004); 
González-Martínez 
et al. (2006);
our unpublished data

Pseudotsuga menziesii 18 27–39 0.0066 NA f3h1; 4cl1; mt-like Krutovsky & Neale (2005b)
Cryptomeria japonica 7 48 0.0025 NA acl5 Kado et al. (2003)
Betula pendula 1 40 0.0023; 

0.0054
NA – Järvinen et al. (2003)

Populus tremula 5 34–48 0.0111 NA – Ingvarsson (2005)

NA, not available.

http://dendrome.ucdavis.edu/Gen_Page_body.htm
http://www.tigr.org/tdb/tgi/plant.shtml
http://fungen.org/Projects/Pine/Pine.htm
http://www.pierroton.inra.fr/genetics/Pinesnps
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of a few haplotype-tagging SNPs (htSNPs) might be sufficient
to genotype all or most common alleles. Indeed, genotyping
a subset (30–60%) of all SNP markers discovered in 18
abiotic-stress candidate genes would be sufficient to represent
most common allelic variation within these genes in different
conifer species (González-Martínez et al., 2006; Krutovsky
& Neale, 2005b). New and highly efficient SNP-discovery
and SNP-genotyping techniques (Table 1 of Pask et al.,
2004; Prokunina & Alarcón-Riquelme, 2004; Table 2 of
Hirschhorn & Daly, 2005) have provided an almost unlimited
source of markers and genotyping capacity.

Selection of adaptive trait-related candidate genes in 
forest trees

Ideally, in a true population-genomics approach as many genes
and traits as available should be studied, because all expressed
genes are candidates for one or several quantitative traits.
However, time and budget restrictions make it necessary to
preselect putative candidate gene loci for the particular
adaptive trait(s) under study. For a few tree species, where fine
QTL mapping studies exist, collocation of candidate genes
might be used. For instance, collocation of cold-tolerance
candidate genes and QTL for cold hardiness were used in
candidate-gene selection for association studies in Douglas fir
(Krutovsky & Neale, 2005b; Wheeler et al., 2005). For most
trees, however, selection of candidate genes will rely on
transference of information from model species (functional
candidates: genes of known function in model systems) or in
gene-expression studies for forest trees (expressional candidates:
Watkinson et al., 2003 for loblolly pine; Dubos & Plomion,
2003 and Dubos et al., 2003 for maritime pine).

Standard neutrality tests applied to population nucleotide
sequence data of a single or a few gene(s) can also be used in
selecting candidate genes or SNPs that are potentially under
selection for association-mapping or population genomics
studies. Deviations of allele (haplotype) distributions from
standard neutral expectations can be associated with balanc-
ing selection, purifying selection or selective sweeps caused by
positive selection (reviewed by Kreitman, 2000; Ford, 2002;
Rosenberg & Nordborg, 2002), as long as deviations are not
caused by demographic changes or population structure.
Several genes that have been identified following this approach
were related to environmental-stress tolerance, disease resist-
ance or general metabolism (Table 1 of Ford, 2002). In pines,
the majority of genes that showed a departure from neutrality
in DNA-sequence studies were related to biotic- and abiotic-
stress tolerance or key metabolic pathways such as those
responsible for the formation of lignin in plants (González-
Martínez et al., 2006; Pot et al., 2005). The lignification path-
way is associated with physical and chemical properties of
wood, tree growth and tolerance to biotic and abiotic stresses
(Pot et al., 2002; Peter & Neale, 2004), and thus might have
adaptive importance.

Association mapping

Association mapping uses LD in populations to find statistical
associations between molecular markers and phenotype. After
many generations of recombination and random mating, only
tightly linked loci will show statistical association, allowing
a finer mapping than standard QTL approaches. If candi-
date genes are used as markers, then this approach can find
individual alleles that are directly involved in the genetic
control of phenotypes shaped by several generations of natural
selection. Association mapping in natural populations has
been proposed as a powerful method for the identification of
genes that underlie complex traits and for characterizing their
effect on complex phenotypes (Cardon & Bell, 2001; Jannink
& Walsh, 2002; Neale & Savolainen, 2004, for conifers;
Gupta et al., 2005; Hirschhorn & Daly, 2005).

Because statistical power in association studies increases with
allele frequency, common variants are usually preferred (Wang
et al., 2005), although common alleles might have lower pheno-
typic effects (Frank, 2004). Population stratification (for instance,
resulting from historical migration patterns) is the most com-
mon systematic bias producing false-positives in association
studies (Marchini et al., 2004; Hirschhorn & Daly, 2005).
Nevertheless, methods have been developed that correct for
population structure or take advantage of family structure in
populations with known pedigrees, such as the transmission/
disequilibrium test of Spielman et al. (1993). Therefore it is
very important to test for population structure in association-
mapping populations. For this purpose, neutral markers are
readily available in forest trees. For instance, highly polymorphic
nuclear microsatellite markers for more than 50 forest-tree
species are available at the Molecular Ecology Notes Primer
Database (July 2005. http://tomato.bio.trinity.edu/MENotes/
home.html). Apart from lacking population substructure, the
sample size and origin of the trees are important in an associa-
tion population. Sample sizes of about 500 individuals are
required, in most cases, to have sufficient power to detect
causative polymorphisms (Long & Langley, 1999). Measurement
of phenotypes with enough precision in such large populations
is challenging, as has been noted in Eucalyptus genomic
programmes (Grattapaglia, 2004). Adaptive variation in forest
trees is often arrayed clinally, in response to latitudinal or
altitudinal climate or soil gradients (García-Gil et al., 2003),
and therefore sampling the edges of a steep cline can increase
the chance of elucidating the molecular basis of the divergent
adaptive trait, as extreme genotypes might be sampled.

Recent studies in aspen and different conifers (pines,
Norway spruce and Douglas fir) have shown a rapid decay of
LD within candidate genes for different adaptive traits (Brown
et al., 2004; Rafalski & Morgante, 2004; González-Martínez
et al., 2006; Ingvarsson, 2005; Krutovsky & Neale, 2005b).
The short extent of LD within genes (from approx. 200–
400 bp in Norway spruce and Douglas fir to approx. 800–
1500 bp in loblolly pine and < 500 bp in aspen), along with

http://tomato.bio.trinity.edu/MENotes/
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large genome sizes in tree species (poplar and pine genomes
are approximately fourfold and 160-fold larger, respectively, than
the Arabidopsis genome), prevents genome-wide association
studies because of the large number of SNPs (approx. 20 million
in pine) that would be needed to cover the full genome evenly with
spacing short enough to effectively identify adaptive mutations
through LD. Instead, a more feasible association-mapping strat-
egy based on candidate genes and flanking promoter regions
is suggested for forest trees (Neale & Savolainen, 2004).

Functional genomics in adaptation research

A great deal of progress has been made in recent years in
functional genomics and technology for studying gene expres-
sion and function. Functional genomics helps us understand
how genotypes influence complex phenotypes by providing
detailed transcriptional profiles and insights on gene
expression and regulatory control. Microarray technology is
rapidly becoming available for studying gene expression in
organisms other than model species. Several other techniques
can also be used for transcriptome analysis, such as cDNA–
AFLP; reverse transcription–polymerase chain reaction
(RT–PCR); and differential-display RT–PCR (DDRT–PCR)
(Kuhn, 2001; Dubos & Plomion, 2003 and references therein).
Once significant association is found between a phenotype
and a particular allele or haplotype, functional genomics
approaches can be used to study the effects of SNP, allele or
haplotype variation on expression. Microarray-based gene-
expression studies can provide relevant information about
genetic interactions among gene complexes in response to
different environmental stresses (Seki et al., 2001; Watkinson
et al., 2003, for Pinus taeda). In addition, expression data for
a gene can be measured in individual trees as a quantitative
trait (an expression level polymorphism, ELP) and thus can be
used in an association or QTL study as any other phenotype
(see insights for QTL mapping of ELPs in Doerge, 2002).

In forest trees, large-scale changes in transcript profiles have
been studied in pines, aspen and other species. Changes in
transcript profiles of P. taeda that reflected photosynthetic
acclimation depending on drought intensity have been revealed
using a microarray based on 2173 cDNA clones (Watkinson
et al., 2003). In their study, cDNAs were classified in
functional categories to analyse the co-response of different
groups of genes to mild and severe drought stress. Several genes
responded differently to the two levels of drought stress,
including some that belonged to the same individual gene family.
For example, late embryogenesis-abundant (LEA) group 2 genes
(dehydrins) were specifically upregulated during mild drought
stress, thus being associated to photosynthetic acclimation,
whereas expression of LEA group 3 genes were more associ-
ated with severe stress conditions. In aspen, a major shift in
gene expression, similar to the effects of senescence in annual
plants, has been observed for autumn leaf senescence, coinciding
with massive chlorophyll degradation, using a 13 490 clone

cDNA microarray (Andersson et al., 2004). Transcriptional
profiles can also vary among year seasons and seed sources.
Yang et al. (2004) found different expression patterns in 569
(out of 1873) cDNAs in Robinia pseudoacacia when transcrip-
tional profiles in autumn and summer were compared. Yang
& Loopstra (2005) showed variation in gene expression
between Arkansas and Louisiana loblolly pine origins that
might be related to adaptation to different environments.

Unveiling adaptive genetic divergence in natural 
populations using outlier-detection approaches

The detection of loci with unusually high or low levels of
variation and differentiation (outlier loci) is a powerful method
to find loci under selection and to separate genome-wide
effects that are caused by demographic processes from adaptive
locus-specific effects (Luikart et al., 2003). For instance, lower than
expected (from the neutral model) observed heterozygosity is
a typical genome-wide signature of population expansion, but
also a locus-specific signature of selective sweeps and directional
selection (Payseur et al., 2002). On the other hand, certain cases
of balancing selection, such as those caused by overdominance
(heterozygous individuals are favoured) or frequency-dependent
selection (in which single alleles confer higher fitness when
rare and become less favoured at higher frequency) can result
in a locus-specific excess of heterozygosity for the selected
gene (Black et al., 2001).

The most widely used tests are based on the detection of
outlier loci for multiple-population genetic differentiation
estimates. One simple method is based on the comparison of
differentiation estimates, such as Fst, for putatively neutral
molecular markers (usually nuclear SSRs) and candidate gene
markers (e.g. SNPs or EST-based markers). Markers that show
higher (or lower) differentiation than putatively neutral ones
can be considered as being under diversifying (or stabilizing)
selection. A more sophisticated approach, which does not require
screening of any neutral molecular marker, consists of the use
of the coalescent theory to build, by means of simulation, a
neutral expectation of genetic divergence among populations.
Two competing methods for this approach are rapidly becom-
ing widespread. First, Beaumont & Nichols (1996) developed
a method based on the analytical framework of Lewontin &
Krakauer (1973) that was further extended using Bayesian the-
ory (Beaumont & Balding, 2004). This method constructs a
theoretical neutral expectation of Fst for each value of expected
heterozygosity (He) based on the global genetic differentiation
found in a sample. Simulation studies have shown an acceptable
rate of identification of loci under positive selection, but also
showed that this method can fail to detect loci under balancing
selection (Beaumont & Balding, 2004). The second method,
but less used to date, was developed by Vitalis et al. (2001) and
is based on estimates (F) of shared ancestry among populations.
This method computes estimates for pairs of populations,
which might be advantageous for detecting selection at a local
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scale (Vitalis et al., 2001). Some more advantages of the
shared-ancestry method of Vitalis et al. (2001) include:
(1) allowing for historical changes in effective population size,
such as range expansions or reductions; (2) being robust when
moderate gene flow among populations is considered; and
(3) having a higher resolution to identify selection in a single or
reduced number of populations through pairwise-population
analysis (Akey et al., 2002). Outlier-detection approaches have
been applied to several organisms, including oaks (Scotti-
Saintagne et al., 2004b) and pine (our unpublished results).
These studies have revealed that intraspecific positive selection
might be widespread in nature. For instance, four out of 55 SNPs
(approx. 7%) in loblolly pine (P. taeda) have shown a level of
genetic differentiation among populations sevenfold the species
average, and were probably affected by natural selection (Fig. 1).

Despite the potential of outlier-based methods to detect
selection in natural populations, it must be noted that it can
be extremely difficult to verify whether all variation in the
genes that behave as outliers are genuinely under adaptive
selection (Luikart et al., 2003). To overcome this drawback,
these methods should be used in combination with coalescence-
based methods, association mapping and gene-expression
studies, and repeated in different environments and/or species.
In addition, the existing statistical tools need to be improved
in order to exploit the full power of outlier-detection methods.

Integrating population genomics and related 
approaches

Understanding the molecular basis of adaptation and the
evolutionary processes responsible for shaping gene diversity
in forest trees requires integrating population genomics approaches
and related disciplines. The coming of age of forest-tree genomics
and biotechnology (reviewed by Campbell et al., 2003;
Krutovsky & Neale, 2005a) and new exciting developments
of evolutionary theory, such as extended coalescence models

(Rosenberg & Nordborg, 2002) and Bayesian inference
(Beaumont & Rannala, 2004), make multistage integrated
approaches possible. First, candidate loci for adaptive traits and
control regions must be selected. Evolutionary and ecological
functional genomics (Feder & Mitchell-Olds, 2003; Purugganan
& Gibson, 2003) through, for instance, transcription profiling
(Gibson, 2002) can provide valuable lists of target candidate
genes. Second, alleles (haplotypes) at candidate gene loci and
their effects on phenotypes need to be characterized via
association mapping. At this stage, large-scale gene-expression
studies, like those based on microarray technology, can
provide detailed transcriptional profiles and insights on gene
interactions and regulatory control. Third, frequencies of
alleles in native populations must be estimated to identify
patterns of adaptive variation across heterogeneous
environments. Detailed knowledge of how landscape features
structure populations is the subject of landscape genetics, a
newborn discipline that addresses the interaction between the
spatial ecological processes and microevolutionary processes,
such as gene flow, genetic drift and selection (Manel et al.,
2003). Allelic frequency distributions of candidate genes
underlying adaptive traits might be correlated with edaphic
or altitudinal clines, similarly to the clinal organization of
phenotypic variation described in several forest trees (Hamrick,
2004 and references therein). Furthermore, genetic differentia-
tion among populations might reveal local selective pressures
resulting in adaptive divergence, or identify the geographical
range where a previously characterized mutation has been
favoured by natural selection (see Storz, 2005 for review).
Finally, community and ecosystem genetics approaches
(Agrawal, 2003; Whitham et al., 2003; Vellend & Geber,
2005), which focus on how intraspecific genetic variation of
keystone organisms can affect dependent species, community
organization and ecosystem dynamics, are necessary to
understand complex natural systems, extending single-tree
studies to an ecosystem-wide level.

Forest trees are good models for population 
genomics

Forest trees are convenient study organisms for population
genomic studies for several reasons: (1) they are relatively
undomesticated and have abundant genetic and phenotypic
variation, unlike many crop plants that have been through
domestication bottlenecks; (2) they are open-pollinated and
typically show low-to-moderate LD, making it easier to
identify genes controlling complex traits; and (3) unlike other
undomesticated plants, traditional tree breeding provides a
large infrastructure for evaluating complex trait variation in
replicated genetic tests across different environments. High levels
of individual heterozygosity in forest trees facilitate the use of
F1 crosses in genetic and QTL mapping and more complex
mating designs are usually not required to produce segregating
mapping populations in forest trees.

Fig. 1 L-shaped distribution of genetic differentiation estimates (Fst) 
for 55 single nucleotide polymorphisms (SNPs) selected from 
adaptive trait and wood quality related candidate genes in loblolly 
pine (Pinus taeda L.). The discontinuous vertical line indicates the 
95% upper confidence interval for genetic differentiation based on 
22 supposedly neutral nuclear microsatellite markers.
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Trees are long-lived, sessile organisms that occupy extensive
landscapes. Many forest trees, including gymnosperms such
as cycads and conifers, are among the most ancient seed
plants, dating back to the Devonian period (400–360 million
yr ago). As a result of recent speciation, there are also several
modern tree species. For example, some species of the diverse
Inga genus of neotropical rainforest trees might have evolved
in the past approx. 2 million yr (Richardson et al., 2001).
Intraspecific genetic diversity of dominant or keystone tree
species may have ecosystem-wide consequences through their
extended phenotypes (see review in Whitham et al., 2003),
being relevant for global biodiversity conservation. Despite
the ancient use of forests by humans, there is still abundant
genetic variation present in natural populations of trees. Reviews
based on molecular markers report higher genetic variation in
trees than in other plant species (Hamrick et al., 1992; Nybom
& Bartish, 2000). Recent studies based on DNA-sequence
data for several loci also showed a considerable amount of
genetic variation still present in trees (Table 1), even in inten-
sively managed species such as loblolly or maritime pines.

Poplars (Populus spp.) and conifers (e.g. Pinus spp., Pseudotsuga
menziesii and Cryptomeria japonica) are the best candidates for
nonclassical model eukaryotes for population, evolutionary
and ecological genomic studies (Feder & Mitchell-Olds, 2003;
Neale & Savolainen, 2004). As a consequence, several multidis-
ciplinary projects have been developed recently to unveil adaptive
variation in these species (e.g. ADEPT, http://dendrome.
ucdavis.edu/adept; TREESNIPS, http://cc.oulu.fi/∼genetwww/
treesnips; DIGENFOR, http://www.pierroton.inra.fr/biogeco/
genetique/projets/europe/digenfor; POPYOMICS, http://www.
soton.ac.uk/∼popyomic). A complete poplar genome (P. tri-
chocarpa), four times larger than the Arabidopsis genome,
has been sequenced and made publicly available (http://
genome.jgi-psf.org/Poptr1/Poptr1.home.html). Conifers rep-
resent a widespread group with an important ecological role
in terrestrial ecosystems, including some species that also have
a high commercial value (e.g. Pinus taeda, Pinus radiata, Pinus
sylvestris, Pinus pinaster, Cryptomeria japonica, Picea abies,
Pseudotsuga menziesii ). Conifers have a unique reproductive
system with a haploid megagametophyte (the nutritious
mother tissue of a seed) originating from a maternal gamete
that can be used for direct sequencing and haplotype determi-
nation. The ancient evolutionary history, low domestication,
large open-pollinated native populations and high levels of both
genetic and phenotypic variation make conifers almost ideal
species for the study of adaptive evolution using population
genomics approaches.

Population genomics and forest-tree 
conservation genetics

Preservation of adaptive polymorphisms and divergent popu-
lations are major goals of genetic conservation (Frankham
et al., 2002; Moritz, 2002). Population genomics studies can

play an important role in the selection of populations for in
situ genetic reserves or for establishing ex situ conservation
plantations. The widespread use of population genomics
approaches in the future, along with new developments in
functional genomics, would increase our understanding of
the molecular basis of adaptation and also provide us tools
for molecular breeding strategies in trees. Identification of
allele-specific effects in hundreds or thousands of genes
via association mapping and other population genomics
approaches would help to understand local adaptive structure.
The estimation of allele frequencies in natural populations
would provide the spatial framework to unveil the action of
natural selection in the wild and to correlate environmental
and allelic variation.

The adoption of population genomics methods would also
correct biases in current conservation genetic studies by, first,
increasing the number of informative as well as neutral (such
as nuSSRs) markers available for population analysis and
guaranteeing a better representation of the genome. Current
estimates of genetic diversity based on a limited number of
markers (typically approx. 6–10 nuSSRs) might be severely
biased (Mariette et al., 2002). Second, population genomics
analysis can help to detect loci that are under strong selection
and remove them from studies of demographic or historical
processes. Otherwise, biases up to 60% in genetic differenti-
ation estimates (Fst) could be obtained because of the inclu-
sion of outlier loci that might be under selection (reviewed by
Luikart et al., 2003). Removing outliers would be also useful
to improve the adjustment of test statistics (such as Tajima’s
D) to the distributions expected under different demographic
models (Schmid et al., 2005).

Transference of information from model to nonmodel
tree species, development of integrated approaches for under-
standing adaptive variation (such as those reviewed here),
and deciphering allelic effects on single phenotypes are basic
elements of new-generation conservation strategies based on
population genomics.
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